Solutions of First-Order Volterra Type Linear Integrodifferential Equations by Collocation Method

The numerical solutions of linear integrodifferential equations of Volterra type have been considered.Power series is used as the basis polynomial to approximate the solution of the problem.Furthermore, standard and Chebyshev-Gauss-Lobatto collocation points were, respectively, chosen to collocate the approximate solution.

Numerical experiments are vibesextoys performed on some sample problems already solved by homotopy analysis method and finite difference methods.Comparison of the absolute error is obtained from the present PPLR_HIDDEN_PRODUCT method and those from aforementioned methods.It is also observed that the absolute errors obtained are very low establishing convergence and computational efficiency.

Leave a Reply

Your email address will not be published. Required fields are marked *